
Under review as a conference paper at ICLR 2022

A Reproducibility Study of Double Q-learning

Anonymous authors
Paper under double-blind review

Abstract

As Q-learning uses a maximizing function the estimates for the action value
have a positive bias and over estimate the action value, Q(s, a). This can
lead to poor performance with stochastic MDPs. The goal of Double Q-
learning is to eliminate this overestimation.

1 Background and Motivation

Double Q-learning is focused on the update function of the Q-learning algorithm Hado van
Hasselt:
Qt+1(st, at) = Qt(st, at) + αt(st, at)[rt + γmax

a
Qt(st+1, a)−Qt(st, at)]

To overcome the overestimation problem, Double Q-learning learns two sets of action values
Qa(s, a) and Qb(s, a). Double q-learning estimates the action value of the next step using the
opposite Q(s, a). The paper proves that using a double estimator is unbiased and will not
have the overestimation of Q-learning. Double Q-learning can occasionally underestimate
the action value as the optimal action of Qa(s, a) is not necessarily the optimal action
of Qb(s, a). On experiments, Q learning tends to be more optimistic than reality since
maximizing on actions introduces some correlation with the product of cumulative density
functions. Double Q-learning will converge to the optimum at the limit. The algorithm that
we implemented for Double Q-learning is:
Hado van Hasselt

Algorithm 1 Double Q-learning algorithm
Initialize QA,QB ,s
repeat

Choose a, based on QA(s, ·) and QB(s, ·), observe r, s ´
Choose (e.g. random) either UPDATE(A) or UPDATE(B)
if UPDATE(A) then

Define a∗ = argmaxaQ
A(s′, a)

QA(s, a)← QA(s, a) + α(s, a)(r + γQB(s′, a∗)−QA(s, a))
else if UPDATE(B) then

Define b∗ = argmaxaQ
B(s′, a)

QB(s, a)← QB(s, a) + α(s, a)(r + γQA(s′, b∗)−QB(s, a))
end if
s ← s ´

until end

2 Related Works

The idea behind Double Q-learning shine when we consider limiting the overestimation
caused by maximum reward selection independently of what the next action should be.
In fact, the method introduces a second approximator to permit a mutual interaction of
both approximators where each of which cannot select the action and contribute to the
update at the same time step. Instead, having learnt from two different disjoint samples
of data, an approximator can select an action that it considers optimal and let the second

1

Ali
Placed Image

Ali
Placed Image

Ali
Typewriter
authors

Ali FRADI, Joshua AMELIA and Ghofrane KHEDHIRI 



Under review as a conference paper at ICLR 2022

approximator evaluate this choice. This way can compensate the overestimation a single
maximum estimator can induce. It also gives a certain flexibility to explore actions to get
closer to effective observation value.
Though this intuition achieves a partial satisfaction, proved mathematically, it still seduces
us to get performance better. Building on this logic, we suggested that a third can minimize
a regret that a Double Q-learning can introduce whenever we take an action with minimum
reward out of set of elite actions while it is possible that we pick an action with higher value.
So the idea is as simple as introducing a third approximator in continuing interaction with
both other approximators. At each time step, one of three is decided to pick an optimal
action and give the permission to the others to evaluate the decision. Having this idea, we
can go for different versions where we consider updating Q(s,a) using average, minimum
of max

a
(Q(s,a)) or whatever other criteria to define. The article Yi (2020) discusses the

possibility of making use of maxMin (Q(s,a)) criteria to boost the Q-learning performance.
The logic running behind the scenes is as follows:

Algorithm 2 Maxmin Q-learning
Input: step-size a, exploration parameter > 0, number of action-value functions N
Initialize N action-value functions Q1, ..., QN randomly
Initialize empty replay buffer D
Observe initial state s
while Agent is interacting with the Environment do

Qmin(s, a)← mink∈1,...,NQk(s, a),∀a ∈ A
Choose action a by -greedy based on Qmin

Take action a, observe r, s′

Store transition (s, a, r, s
′
) in D

Select a subset S from {1, . . . , N} (e.g., randomly select one i to update)
for i ∈ S do

Sample random mini-batch of transitions (sD, aD, rD, s
′

D) from D
Get update target: Y MQ ← rD + γmaxa′∈AQ

min(s
′

D, a
′
)

Update action-value Qi : Qi(sD, aD)← Qi(sD, aD) + α[Y MQ −Qi(sD, aD)]
end
s ← s′

end

3 Discussion

3.1 Reproducing Results

Our first goal was to compare the estimations of the Q(s, a) for the Q-learning and Double
Q-learning. To reproduce the results we used the epsilon and alpha equations from the
paper. ε(s) = 1

n(s)

αt(s, a) =
1

n0.8
t (s,a)

Where n(s) is the number of times state s has been visited and nt(s, a) is the number of
times action a was taking in state s. For Double Q-learning nt is tracked separately when Qa

or Qb is updated. The polynomial learning rate should have superior performanceEven-Dar
& Mansour (2003).

2



Under review as a conference paper at ICLR 2022

3.1.1 Grid World

Figure 1: Grid world environment

The Grid World used in Hado van Hasselt was a 3x3 grid with the start in the bottom
left corner and the goal in the top right corner. After each step a reward is given that is
randomly chosen between -12 or +10. Any action while in the goal state ends the episode
and returns a reward of +5. The average reward for a non terminal action is -1 and the
optimal episode is 5 steps with an average reward of +0.2 per step.
Figure 3 shows the average reward per step and the maximum action value in the starting
state for both the papers results and ours. The paper trains for 10,000 episodes and averages
the results over 10,000 experiments. Using colab to recreate these tests would take far too
long so our tests only train for 1,000 episodes. The Double Q-learning results were averaged
over 1000 experiments and the Q-learning was averaged over only 200 experiments as the
episodes took longer due to poorer performance on finding the goal.

Figure 2: Comparing reproducibility results. Double Q-learning paper (left) and our results
(right)

For Triple Q-learning versions we trained the models in Grid World environment with same
settings mentioned in Hado van Hasselt.

3



Under review as a conference paper at ICLR 2022

(a) Average Triple Q-learning (b) Average Triple Q-learning

Figure 3: Results for Triple Q-learning algorithms

The results denoted in figures above are the output of implementing both MaxMin Triple
Q-learning and Average Triple Q-learning on the Grid World used in research paper. The
results show that MaxMin and triple Q-learning perform almost the same. MaxMin is faster
to learn and presents a very low variance. MaxMin Triple Q-learning succeed to perform
a robust optimization taking maximum of worst admissible action while for average triple
Q-learning it clones in some way the Q-learning greedy behavior with 3 approximators.

3.1.2 Frozen Lake

Figure 4: Frozen Lake environment

We used a 4x4 frozen lake with a slip rate of 0.1 to compare Q-learning and Double Q-
learning. S is the starting state. G is the goal state. H are holes and F are basic states.
Every step has a reward of -1. Any action in a hole has a reward of -100 and ends the
episode. Any action in the goal state has a reward of 0. If 100 steps are taken the episode
is terminated and a reward of -50 is given. To compare the two algorithms we trained the
models for 5000 episodes and averaged over 100 experiments. We compared the undiscounted
returns as well as the maximum action value of the starting state. The same method to
choose and were used as with the Grid World. No hyper-parameters were changed other
than the number of tests and episodes were changed between the two tests.
Figure 5 shows the Q(s,a) for double Q-learning is lower than for Q-learning as expected.
For this environment Double Q-learning performed poorer than Q-learning for the set of
hyper-parameters chosen. Double Q-learnings performance would likely be improved with
a different method of calculating ε and α.

4



Under review as a conference paper at ICLR 2022

Figure 5: Results of Q-learning and Double Q-learning on the frozen lake environment

For Triple Q-learning versions, models are trained on 5000 episodes and averaged over 100
independent runs with exploration rate ε = 0.02, discount γ = 0.99, and learning rate
α = 0.1. We compared the undiscounted rewards for average triple Q-learning and MaxMin
triple Q-learning. and then compare them with previous results from Q-learning and double
Q-learning implementations.

5



Under review as a conference paper at ICLR 2022

(a) Q-learning (b) Double Q-learning

(c) Average Triple Q-learning (d) MaxMin Triple Q-learning

Figure 6: Undiscounted returns of Q-learning algorithms on the frozen lake environment

As depicted in the above figures, we can obviously see that Q-learning has the most variance
due to its greedy policy and overestimation of the target valueQ̂(s’,a’). Double Q-learning
corrects this high variance, but in this environment it performs worse than Q-learning since
it converges to a smaller return. Triple Q-learning and and MaxMin Q-learning perform
both better than the two previous methods and in a slightly different way from each other.
Both the two methods resulted in a good trade off between exporation and exploitation,
reason why both reduce the variance and converge fast to a better return .Though, MaxMin
performed slightly better due to more accurate estimate of the target value Q̂(s’,a’).

3.1.3 Cartpole

We used Cartpole environment from openAI. Cartpole environment suggest putting pole in
equilibrium while the cart is moving. The states are described through a tuple of 4 variables
[x, v, j, w] denoting the horizontal position, the horizontal velocity of the cart, the angle
between the pole and the vertical position and the angular velocity of the pole.
x ∈ [−4.8, 4.8], v∈ [−4, 4], θ ∈ [−0.418, 0.418] and ω ∈ [−4, 4].
Two actions are possible: move the cart in the direction of x (left/right). An episode ends
when a pole deviates in a direction more than 15 degrees. Cumulative reward increases by 1
until the episode ends. We set penalty for ending an episode. We set number of episodes to
2000, learning α = 0.1, discount factor γ = 0.99 and exploration rate ε = 0.02. Certainly we
needed to transform continuous states to discrete format: we assumed that observed states
can be assigned to 20 intervals that lay between lower and upper bound of each variable.
The figure below depicts the performance of Q-learning, Double Q-learning, Triple Average
Q-learning, Triple maxMin Q-learning on a Cartpole environment with the discretization:

6



Under review as a conference paper at ICLR 2022

Figure 7: Comparison between Q-learning algorithms performances on Cartpole environ-
ment

Figure 6 proves a better performance, in this specific environment, of Double Q-learning.
It has the least variance and faster learning is credited to Double Q-learning as well. The
algorithm that yields second best performance is the Triple maxMin Q-learning version.
The rest of two algorithms are almost performing the same. Algorithms other than simple
Q-learning seem to present a promoting improvement by the end of 2000 episodes. Hence,
we can say nothing about whether a further tweaking of parameters may result in different
behavior of the presented algorithms. If we focus on what the plots are giving here, simple
Q-learning shows the highest variance as it is the greediest of all versions. Double Q-learning
seems to find an optimal exploration-exploitation trade-off to maximize yield guaranteed by
a mutual interaction of two approximators on two disjoint independent data sets. maxMin
Q-learning algorithm is likely to be stuck in sub-optimal policy while minimizing an un-
quantified regret (if an action’s estimation is lower than the maximum yield which is truly
the case). The average Triple Q-learning may show better performance for a longer run (not
guaranteed but hopefully) but in our case it seem that updating Q(s,a) through the average
of other two approximators do nothing more than cloning Q-learning behavior.

4 Conclusion

Double and Triple Q-learning were suggested to handle the downfalls of simple Q-learning as
outcomes of all time exploitation and overestimating state-action combinations that are up
to downgrade the overall return. However those algorithms showed a remarkable improve-
ment on Frozen Lake environment and seemed to be equally or slightly better performing on
Cartpole environment (compared to simple Q-learning). This may have a relation with the
amount of data we lost due to the discretization process and the overall hyper-parameters.
Considering values of Q(s,a) on Frozen Lake and for 0 and 10% chance to slip, we can see
a significant improvement of policy. In fact, states that are close to holes in states 6, 8, 12
and 13, logically should have lower value estimate such that the agent avoids them to build
an optimal policy: an agent if he follows a risky way, he might fall by chance/exploration
out of borders.

7



Under review as a conference paper at ICLR 2022

Double Q-learning, as an example, shows a better ability to find a safe way to the goal
while maximizing the yield. It succeeds to get expectations as close as possible to reality
and is aware of huge possible penalties on the way downgrading a solution even if it seems
optimal in terms of distance and average income. We say that adding approximators to
work all together to update Q(s,a) values shifts the Q-learning algorithm from being greedy
and optimistic to a more robust and a conservative approach to avoid worst scenarios.

5 Code
• Ali : https://colab.research.google.com/drive/1pj2F6HzbpDWDEKhgWrhDClykiml9GqYk?

usp=sharing
• Josh : https://colab.research.google.com/drive/1K6Qnu_

SGqnAYAO3Dw2Rh3eyrDj6jiU5g?usp=sharing
• Ghofrane: https://colab.research.google.com/drive/1_

F0cPhlV2rN5nJMldyQkU1W19MM2Iwyq?usp=sharing

6 Contributions

Josh
• Implementation of Double Q-learning
• Reproducing comparison of Q-learning and Double Q-learning on Grid World
• Comparing results of Q-learning and Double Q-learning Frozen Lake

Ali
• Implementation of simple, double , triple average/maxMin algorithms on Cartpole

environment.
• Comparison of results on Cartpole
• Contributed to overall analysis and report reshaping.

Ghofrane
• Documented the Triple Q-learning methods with scientific articles.
• Implemented versions of Triple Q-learning on Frozen Lake and Grid World.
• Contributed to overall analysis.

References
E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Machine Learning

Research, 2003. 3.1

Hado van Hasselt. Double Q-learning. Centrum Wiskunde Informatica. 1, 3.1.1, 3.1.1

LiMing Yi. Lane change of vehicles based on dqn. COMPUTER TECHNOLOGY AND
TRANSPORTATION, pp. 593–597, 2020. 2

8

https://colab.research.google.com/drive/1pj2F6HzbpDWDEKhgWrhDClykiml9GqYk?usp=sharing
https://colab.research.google.com/drive/1pj2F6HzbpDWDEKhgWrhDClykiml9GqYk?usp=sharing
https://colab.research.google.com/drive/1K6Qnu_SGqnAYAO3Dw2Rh3eyrDj6jiU5g?usp=sharing
https://colab.research.google.com/drive/1K6Qnu_SGqnAYAO3Dw2Rh3eyrDj6jiU5g?usp=sharing
https://colab.research.google.com/drive/1_F0cPhlV2rN5nJMldyQkU1W19MM2Iwyq?usp=sharing
https://colab.research.google.com/drive/1_F0cPhlV2rN5nJMldyQkU1W19MM2Iwyq?usp=sharing



